MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2018 Calculator-assumed

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 8 of term 2, 2018

c

2

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION

Section	Two:	Calculator-assumed

<u>(100 Marks)</u>

uestion 9	(5 mark
Solution	
$(0,-6) \Rightarrow d = -6$	
$f(x) = ax^4 + bx^2 + cx + d$	
$f'(x) = 4ax^3 + 2bx + c$	
f'(0) = 0	
$0 = 4a(0)^3 + 2b(0) + c$	
$\therefore c = 0$	
$f'(x) = 4ax^3 + 2bx$	
f'(1) = 0	
$0 = 4a(1)^3 + 2b(1)$	
0 = 4a + 2b	
b = -2a (1)	
$(1,-8) \Longrightarrow -8 = a+b-6$ ②	
ie $-8 = a - 2a - 6$	
ie $a=2$	
$\therefore b = -4$	
$\therefore y = 2x^4 - 4x^2 - 6$	
Mathematical behaviours	Marks
• uses (0,- 6) to determine <i>d</i>	1
• differentiates $f(x)$ and uses $f'(0) = 0$ to obtain c	
• states $f'(1) = 0$ and states relationship between a and b	1
 uses (1,-8) to determine relationship between a and b 	1
 solves simultaneous equations to determine a and b 	1

Question 10(a)

Solution		
Let F denote the number of questions that Fiona answers correctly, assuming that she is		
guessing. Then $P(F \ge 3)$ is probability that Fiona passes.		
Similarly, if G denotes the number of questions that Gary answers correctly, as	ssuming that	
he is guessing, then $P(G \ge 10)$ is probability that Gary passes.		
Now $F \sim B(6, 1/5)$, and $G \sim B(20, 1/3)$.		
$P(F \ge 3) \approx 0.0989$ and $P(G \ge 10) \approx 0.0919$		
Since the probability that Gary passes via guessing is less than the probability that Fiona		
passes via guessing, we can say that Gary is luckier.		
Mathematical behaviours	Marks	
 recognizes the binomial probabilities 	1	
evaluates probabilities	1+1	
justifies who is luckier	1	

Question 10 (b) (i)

Solution Let L denote the number of light bulbs that fail in a random sample of 100. Then $L \sim B(100, 0.04)$, if the manufacturer is correct. Then $P(L \ge 15) = 1.082 \times 10^{-5}$ (very very small) Mathematical behaviours Marks recognizes binomial probability with correct parameters 1 • 1 states probability

Question 10 (b) (ii)

(2 marks)

Solution		
Because the probability that such a large number of bulbs fail if the manufacturer's claim is		
correct, is very, very small, there is strong reason to doubt the validity of the claim.		
Mathematical behaviours Marks		
correct conclusion	1	
justifies reasoning	1	

Question 11

(3 marks)

Solution		
$\frac{dI}{dt} = 0.03I$		
$\therefore I = I_0 e^{0.03t}$		
For the number of infected fruit to double,		
$2I_0 = I_0 e^{0.03t}$		
ie $t \approx 23.1$ days		
Mathematical behaviours	Marks	
• recognises and states exponential growth formula for <i>I</i>	1	
• uses relationship $I = 2I_0$	1	
states solution	1	

3

Question 12 (a)

Solution	
$X_{max} \leq n$ if and only if the number of each die is no more than n	
n	
For each die this occurs with probability $\overline{6}$	
Since the dice are independent, the probability that this occurs both dice is $\left(\left(\left$	$\left(\frac{n}{6}\right)^2$
Mathematical behaviours	Marks
 observes that both numbers must be at most n 	1
uses independence to justify multiplicative formula	1

Question 12 (b)

Solution		
From part (a) $P(X_{max} \le 4) = 4/9$		
So Vanessa's expected winnings from each \$1 she bets is $\left(\frac{4}{9} - \frac{5}{9}\right) = -\frac{1}{9}$		
So her expected return from 100 \$1 bets is a loss of $\$\frac{100}{9} \cong \11.11		
Mathematical behaviours	Marks	
correct expected value for a \$1 bet.	1	
correct final answer	1	

Question 12 (c)

Solution			
Γ	n	$P(X_{max} = n)$	
_	1	1/36	
	2	4/36 - 1/36 = 3/36	
	3	9/36 - 4/36 = 5/36	
	4	16/36 – 9/36 = 7/36	
	5	25/36 - 16/36 = 9/36	
	6	36/36 - 25/36 = 11/36	
Mathematical behaviours			Marks
uses subtraction to obtain individual probabilities from the cumulative			1
ones in part (a)			1
• correct answers	in all 5 ou	tstanding cases	

(2 marks)

(2 marks)

(2 marks)

Question 12 (d)

(2 marks)

		So	ution	
Directly f	from calcul	ator, or via:		
	n	$P(X_{max} = n)$	$n \times P(X_{max} = n)$	
	1	1/36	1/36	
	2	3/36	6/36	
	3	5/36	15/36	
	4	7/36	28/36	
	5	9/36	45/36	
	6	11/36	66/36	
	L	171		1
So $E(X_n)$	$(n \times n_{ax}) = \Sigma(n \times n_{ax})$	$\langle P(X_{max} = n)) = \frac{161}{36} \approx$	4.47	

	Mathematical behaviours	
•	writes a calculation for expected value	1
•	determines expected value	1

Question 12 (e)

	Solution			
Directly	from calcu	lator, or via		
	n	$P(X_{max} = n)$	$n^2 \times P(X_{max} = n)$	
	1	1/36	1/36	
	2	3/36	12/36	
	3	5/36	45/36	
	4	7/36	112/36	
	5	9/36	225/36	
	6	11/36	396/36	
So Var(E_{max}) = $E($	$\left(X_{max}^{2}\right) - E\left(X_{max}\right)^{2} = \frac{7911}{36}$	$-\left(\frac{161}{36}\right)^2 = \frac{2555}{1296} \approx 1.97$	
Mathematical behaviours			Marks	
• calculates $E(X^2)$ correctly			1	
calculates variance correctly			1	

Question 12 (f)

Solution	
If a large number of dice are thrown, <i>m</i> , say, then	
$P(Y_{max} \leq 5) = \left(\frac{5}{6}\right)^m \approx 0.$	
So Y_{max} is almost certainly equal to 6	
So $E(Y_{max}) \approx 6$ and $Var(Y_{max}) \approx 0$	
Mathematical behaviours	Marks
• states that Y_{max} is almost certainly equal to 6	1
• correct answer for $E(Y_{max})$	1
• correct answer for $Var(Y_{max})$	1

Question 13 (a)

(4 marks)

		(4 1101100)
Solution		
Let y represent the yield from the trees	C Edit Action Interac	tive 🖂
Let x represent the number of extra trees planted	$\begin{array}{c} 0.5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array}$	シ▼₩▼►
y = (65 + x)(420 - 4x)	Define $f(x)=(65+x)$	(420-4x) A done
$y = 27300 + 160x - 4x^2$	$\frac{d}{dx}(f(x))$	
y' = 160 - 8x	ux	-8•x+160
0 = 160 - 8x	solve $\left(\frac{d}{dx}(f(x))=0, x\right)$	x)
x = 20	(dx (dx))	{x=20}
$y'' = -8 \Longrightarrow x = 20$ is max	d2	(X-20)
Macintosh orchard should plant an additional 20 trees	$\frac{d^2}{dx^2}(f(x)) \mid x=20$	
for optimal yield.		-8
Mathematical behaviours		Marks
clearly identifies variables used in equation		1
correct 'yield' equation		1
• differentiates and solves $y' = 0$		1
justifies that maximum is found and states solution		1

Question 13 (b)

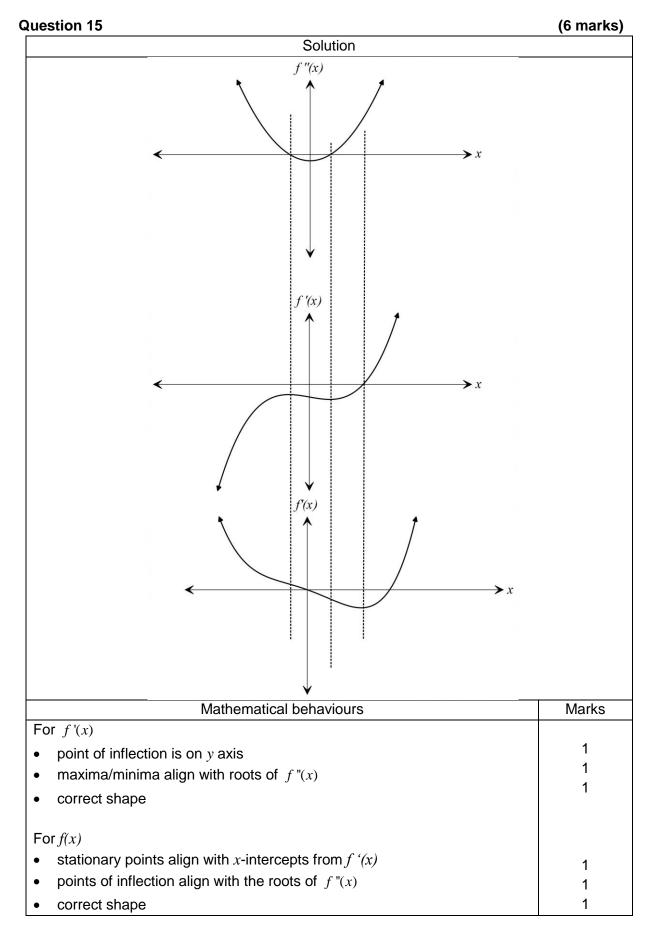
Question 13 (b)		(1 mark)
Solution		
Current Yield: 27 300 oranges Optimal Yield: 28 900 oranges	f(20)	28900
$\frac{28900 - 27300}{27300} \times 100\%$ \$\approx 5.86\%		*100 . 860805861
Therefore there would be a 5.9% increase in yield after planting 10 additional trees.		
Mathematical behaviours		Marks
states correct answer		1

Question 14 (a)	(3 marks)
Soluti	on
upper limit = $2 \times (f(0) + f(2) + f(4))$ = $2 \times (\frac{3}{6} + \frac{3}{8} + \frac{3}{10})$	$\begin{array}{c c} \hline & \text{Edit Action Interactive} \\ \hline & \hline$
$=\frac{47}{20}$	2*(f(0)+f(2)+f(4)) $\frac{47}{20}$
lower limit = $2 \times (f(2) + f(4) + f(6))$ = $2 \times (\frac{3}{8} + \frac{3}{10} + \frac{3}{12})$	2*(f(0)+f(2)+f(4)) 2.35 $2*(f(2)+f(4)+f(6))$ 37
$=\frac{37}{20}$	$\frac{37}{20}$ 2*(f(2)+f(4)+f(6)) 1.85
$\int_{0}^{6} f(x) dx$ represents the area under the curve f	rom $x = 0$ to $x = 6$, bounded by the x axis.
The exact area will lie between the upper limit a	and lower limit.
Mathematical behavio	Marks

	Mathematical behaviours	Marks
٠	shows a calculation to determine an upper limit	1
•	shows a calculation to determine a lower limit	1
•	explains the limits in terms of area	1

Question 14 (b)

(1 mark)

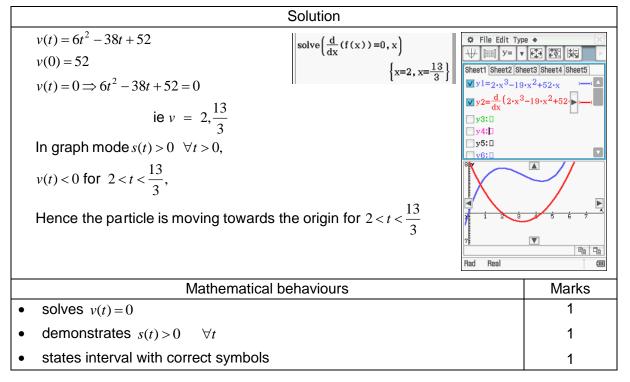

Solution		
Using more rectangles would enable the rectangles to more closely approximate the shape		
of the function. Hence the error involved in approximating $\int_{0}^{6} f(x) dx$ is less	and the	
interval obtained will decrease.		
Mathematical behaviours	Marks	
explains why the interval will decrease	1	

Question 14 (c)

(1 mark)

Solution	
$\int_{0}^{6} \frac{3}{x+6} dx = 2.079441542$ ≈ 2.079	
Mathematical behaviours	Marks
 states correct answer to 4 significant figures 	1

7



Question 16 (a)

Solution $s'(t) = 6t^2 - 38t + 52$ Define $f(x)=2 \cdot x^3 - 19 \cdot x^2 + 52 \cdot x$ $s'(5) = 6(5)^2 - 38(5) + 52$ done $\frac{d}{dx}(f(x))|x=5$ s'(5) = 1212 The rate of change of displacement with respect to time at 5 seconds is 12 m/s. Mathematical behaviours Marks 1 determines s'(t)• 1 determines the rate of change with units

Question 16 (b)

(3 marks)

Question 17 (a)

(3 marks)

	Solution	
The required probabilities ar number of all possible choice	e the ratios of the numbers of favo	urable choices to the
The number of all possible c	hoices is $\binom{5}{2} = 10$	
x	P(A = x)	
0	$\binom{2}{2} \div 10 = 1/10$	
1	$\binom{2}{1}\binom{3}{1} \div 10 = 6/10$	
2	$\binom{3}{2} \div 10 = 3/10$	
Ma	athematical behaviours	Marks
uses combinations to det		1
• uses combinations to det	termine denominators	1

10

- uses combinations to determine denominators .
- evaluates all probabilities •

Question 17 (b)

Solution		
$E(A) = 0 \times 0.1 + 1 \times 0.6 + 2 \times 0.3 = 1.2$		
$E(A^2) = 0 \times 0.1 + 1 \times 0.6 + 4 \times 0.3 = 1.8$		
So $Var(A) = E(A^2) - E(A)^2 = 1.8 - 1.44 = 0.36$		
In summary, the expected value of A is 1.2 and the variance is 0.36		
Mathematical behaviours	Marks	
• evaluates <i>E</i> (<i>A</i>)	1	
• evaluates $E(A^2)$	1	
• evaluates Var(A)	1	

Question 17 (c)

(3 marks)

1

(3 marks)

Solution		
B has a binomial distribution because it represents the sum of two independent trials		
(choosing mugs) with the same probability of 'success' in each trial		
A does not have a binomial distribution because the trials are not independent, i.e. the		
outcome of the first trial affects the probabilities in the second trial		
Mathematical behaviours	Marks	
• independence of trials noted (for <i>B</i>)	1	

1 unchanged probabilities noted (for B) • 1 probabilities for the second choice affected by the outcome of the first • choice (for A)

Question 17 (d)

	·/		(o marko)
		Solution	
The correct a	inswer is the	expected value of C.	
C = x if and c	only if the x^{ti}	^h mug chosen is unchipped and ε	kactly 1 of the previous $n-1$
chosen mugs	s is unchippe	ed. So	
	x	P(C = x)	
	2	$\frac{3}{5} \times \frac{2}{4} = 3/10$	
	3	$\frac{\frac{6}{10} \times \frac{2}{3}}{\frac{2}{3}} = 4/10$	
	4	$\frac{3}{10} \times \frac{2}{2} = 3/10$	
So $E(C) = 2$	× 0.3 + 3 × 0	$0.4 + 4 \times 0.3 = 3$	
So Caitlin car	n expect to c	choose, on average, 3 mugs.	
		Mathematical behaviours	Marks
 recognize 	es E(C) as th	ne correct answer	1
-	individual p		1+1+1
 evaluates 	-		1
uestion 18 (a)		(1 mark)

Question 18 (a)

(1 mark)

Solution	
$F(x) = \int_{-4}^{x} f(t) dt$ for $-4 \le x \le 1$.	
$F(-4) = \int_{-4}^{-4} f(t) \mathrm{dt} = 0$	
Mathematical behaviours	Marks
• determines <i>F</i> (-4)	1

Question 18 (b)

Solution	
$F'(x) = \frac{d}{dx} \int_{-4}^{x} f(t) dt .$ = $f(x)$ Stationary points occur at $F'(x) = f(x) = 0$, hence at $x = -4, -2$ and 0.	
Mathematical behaviours	Marks
recognizes and applies the fundamental theorem	1
identifies three stationary points	1

Question 18 (c)

(2 marks)

Solution	
<i>F</i> is increasing where $F'(x) > 0$, hence where $f(x)$ is greater than 0	
\therefore <i>F</i> is increasing for $-4 < x < -2$ and $0 < x \le 1$.	
Mathematical behaviours	Marks
identifies one interval for which <i>F</i> is increasing	1
• states, with correct symbols, both intervals for which <i>F</i> is increasing	1

12

Question 18 (d)

(2 marks)

SolutionWhere points of inflection occur F''(x) = f'(x) = 0. Hence $x \approx -0.8$ and -3.2.Mathematical behavioursMarks

- states F''(x) = f'(x) = 0.
- states the approximate x value (± 0.1) of both stationary points

Question 19

		(4 marks)
	Solution	
	$e^{-x+4} = e$ $x = 3$	
$A = 2 \int_{1}^{2} e^{x} - e dx$ $= 2 \left[e^{x} - ex \right]_{1}^{2}$ $= 2 \left[\left(e^{2} - 2e \right) - \left(e^{1} - e \right) \right]$ $= 2 \left(e^{2} - 2e \right)$		= ▼ 💽 🐼 対 ► 2 Sheet3 Sheet4 Sheet5
Mathema	tical behaviours	Marks
		1
• determines one <i>x</i> co-ordinate		
• determines all <i>x</i> co-ordinates of	of intersections	
• states appropriate integral to o	determine area	1
 determines exact area 		1

1 1

Question 20 (a)

Solu	tion	
$a(t) = 6t + 4$ $v(t) = 3t^{2} + 4t + c$	$\int_{\Box}^{\Box} 6x + 4dx$	Ľ
$t = 0, v = 0 \Longrightarrow c = o$ $\therefore v(t) = 3t^2 + 4t$		3•x ² +4•x
Mathematical behavio	urs	Marks
anti-differentiates correctly		1
• uses initial conditions to establish $c = 0$		1

13

Question 20 (b)

Solution	
If the particle changes direction, $v(t) = 0$ $ie \ 3t^2 + 4t = 0$ $ie \ t(3t+4) = 0$	$3 \cdot x^2 + 4 \cdot x = 0, x$ $\left\{x = 0, x = -\frac{4}{3}\right\}$
<i>ie</i> $t = 0, \frac{-4}{3}$ Hence it does not cha	ange direction
Mathematical behaviours	Marks
• equates $v(t) = 0$	1
solves equation and states that particle does not change dir	ection 1

Question 20 (c)

Solution 3 $\int_{0}^{3} 3 \cdot x^{2} + 4 \cdot x dx$ $3t^2 + 4t \quad dt = 45$ Total distance travelled = 0 45 Hence average speed = $15ms^{-1}$ Mathematical behaviours Marks 1 states integral required to determine total distance travelled ٠ 1 determines average speed •

Question 20 (d)

Solution		
$v(2) = 20ms^{-1}, a(2) = 16ms^{-2}$	$3 \cdot x^2 + 4 \cdot x x = 2$	
Hence the particle is moving with a		20
positive velocity and is gaining speed	6x+4 x=2	
		16
Marking key/mathematical behaviours		Marks
• evaluates at least one of v(2) and a(2)		1
 states the particle is moving with a positive velocity/to the speeding up 	e right and is	1

(2 marks)

(2 marks)

(2 marks)

Question 21 (a)

Solution	
$S = 2\pi r h + 2\pi r^2$	
$=2\pi r 6r + 2\pi r^2$	
$=14\pi r^2$	
Mathematical behaviours	Marks
determines expression	1

Question 21 (b)

Solution	
$\frac{dS}{dr} = 28\pi r \qquad \qquad \frac{\delta r}{r} = 0.048$	
$\delta S \approx \frac{dS}{dr} \times \delta r$	
$\delta S \approx 28\pi r \times \delta r$	
$\delta S \approx 28\pi r \times 0.048r$	
$r = \frac{6.541}{2}$	
$\therefore \delta S \approx 28\pi (0.048) (\frac{6.541}{2})^2$	
≈ 45.2	
\therefore Approximately 45.2 cm ²	
Mathematical behaviours	Marks
differentiates expression	1
• uses $\delta r = 0.048r$ and $r = \frac{6.541}{2}$	1
• obtains expression for δS	1
determines approximate increase in metal required including unit	1

Question 22 (a)

Question 22 (a)	(2 marks)
Solution	
In the northern hemisphere highest temperatures occur in the middle of the year in the southern hemisphere highest temperatures occur at the beginning and e year. Since the data show high temperatures in the middle of the year, the city likely to be in the northern hemisphere.	nd of the
Mathematical behaviours	Marks
states more likely hemisphere	1
valid reasoning	1

(4 marks)

Question 22 (b)

15

CALCULATOR-ASSUMED **SEMESTER 1 (UNIT 3) EXAMINATION**

Solution		
The average maximum temperature values are 8, 8, 10, 13, 18, 22, 25, 25, 24, 21, 17 and 12. Mean = 16.92 So the estimated average maximum temperature is 16.92°C	$\begin{tabular}{ c c c c c } \hline Stat Calculation \\\hline \hline One-Variable \\\hline \hline x = 16.91$ \\ $\Sigma x = 203$ \\ $\Sigma x = 3905$ \\ σ_{x} = 6.264$ \\ s_{x} = 6.542$ \\ n = 12$ \\\hline \end{tabular}$	4278
Mathematical behaviours		Marks
• states an appropriate calculation to determine the mean		1

determines the mean •

Question 22 (c)

Solution		
The estimated standard deviation of the temperatures is 6.26°C.		
Mathematical behaviours	Marks	
determines the standard deviation	1	
states standard deviation to at least 1 decimal place	1	

Question 22 (d)

	()
Solution	
The estimated average maximum temperature is $16.92 \times 1.8 + 32 \approx 62.46^{\circ}$ F	
The estimated standard deviation is $6.26 \times 1.8 \approx 11.27^{\circ}$ F	
Mathematical behaviours	Marks
 states average in °F 	1
• states standard deviation in $^{\circ}F$	1

Question 22 (e)

Solution		
In the model $y = A - B \cos\left(\frac{\pi t}{6} - 0.84\right)$ the average value is A, and the values range from		
$A - B$ to $A + B$. So $A \approx 17$ and $B \approx 9$		
Mathematical behaviours	Marks	
determines A	1	
determines B	1	

Question 22 (f)

Solution		
$y = A - B \cos\left(\frac{\pi t}{6} - 0.84\right)$ has a minimum when $\frac{\pi t}{6} - 0.84 = 0$, i.e. $t \approx 1.6$ The nearest integer value is 2. So according to the model, the maximum daily temperatures are least when $t = 2$, i.e. in February.	Edit Action Interact $f_{\pm 2}^{0.5}$ f_{dx} Simp f_{dx} $f_{\pm 2}^{0.5}$ f_{dx} Simp f_{dx} f_{dx} Simp f_{dx}	•0.84),x,►▲
Mathematical behaviours		Marks
• obtains $t \approx 1.6$		1
states the lowest maximum is reached in February		1

(2 marks)

(2 marks)

(2 marks)

(2 marks)

1